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Motivation

The intersex rate of male smallmouth and largemouth bass in 
the U.S. ranges from 60% to 100% because of an increase in 
estrogenic endocrine disruption

Despite seeming promising in pre-clinical studies in 
animals, more than 30% of pharmaceuticals failed in 
clinical trials because of their toxicity in humans

115 million animals are utilized for clinical 
experimentation worldwide

With the current regulations, aspirin and paracetamol would 
not have been approved
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SMILES Flavors:
original molecule (“raw”): c1ccc(/C=C/[C@H](C)O)cc1

canonical (RDKit): C[C@H](O)/C=C/c1ccccc1

remove stereoinformation: c1ccc(/C=C/C(C)O)cc1

remove double bond direction: c1ccc(C=C[C@H](C)O)cc1

kekulization: C1=CC=C(/C=C/[C@H](C)O)C=C1

explicit bonds: c1:c:c:c(/C=C/[C@H](-C)-O):c:c1

explicit hydrogens: [cH]1[cH][cH][c](/[CH]=[CH]/[C@H]([CH3])[OH])[cH][cH]1

augmentation: C[C@H](O)C=Cc1ccccc1,...

shuffling: c[C@H]Ccc/C(Cc=Oc)1/)c(,...

SELFIES:   [c][Branch13][Branch21][/C][=C][/C@Hexpl][Branch13]

[epsilon][C][O][c][c][c][c][c][Ring1][Branch23]
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Toxicity Prediction
• Tox21: environmental toxicity

→12’707 compounds, 12 tasks

→ROC-AUC: 0.877

• SIDER: side effects

→1’430 compounds, 27 tasks

→ROC-AUC: 0.835

• ClinTox: toxicity during clinical trials

→1’491 compounds, 2 tasks

→ROC-AUC: 0.983



→ Mean attention weights 

from model on toxicophores

are significantly higher than 

on non-toxicophores

→Purely data-driven 
approach

→Validation of prediction 
model

→Generation of new 
toxicophore hypotheses
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Application

• Implementation into

PaccMann*
→Generation of efficacious,   

transcriptomics-specific cancer

drugs

→Environmental toxicity, side effects

and toxicity in clinical trials as

critics in generative model

→ All these compounds are
predicted to be non-toxic

for each Tox21 task

*Born, Jannis, et al. "Paccmann rl: Designing anticancer drugs from
transcriptomic data via reinforcement learning." International 
Conference on Research in Computational Molecular Biology. Springer, 
Cham, 2020.


